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ABSTRACT

This report aims to reveal and demonstrate the theoretical basis of a matrix-based
coding tool that can effectively generate matrices that capture the supply and de-
mand pattern of urban road networks. The basic assumption of the tool is the
hierarchical network topology considering flow conservation. The supply pattern is
captured by several structural matrices while the demand pattern is described by
model parameter matrices. The tool can be applied to macroscopic traffic modeling
and this report uses the finite capacity queuing network model as an example. A
detailed application process of the proposed coding tool is given for a toy urban
network. The process is aligned with the step-by-step guidance in the user manual,
attaching a thorough explanation of obtaining corresponding values for variables
and elements in matrices.

Keywords: Matrix, urban road network, topology, traffic count, traffic signal
control.
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Chapter 1

Introduction

When it comes to traffic management and control for urban road networks, the
structural pattern of the network can be regarded as stable in certain periods
(usually in months or years). Nevertheless, taking into account the differences
among cities and districts, effectively forming customized macroscopic traffic mod-
els to provide the decision-making reference for urban traffic management control
can contribute to more cost-effective congestion mitigation approaches. On the
one hand, the considerable complexity of road network connectivity in large-scale
metropolitan areas leads to tedious time for traffic signal engineers and researchers
to build abstract models before obtaining the optimal management and control
strategy. On the other hand, facing the time-varying demand (e.g., traffic vol-
ume) and supply (e.g, effective green time) pattern given the stable morphological
characteristics of road networks within a monthly period, controllers need to corre-
spondingly transfer the input raw data into estimated exogenous model parameters
in a real-time basis so that the optimal solution can be adaptively obtained.

For large-scale urban road networks, the most common practice to collect traffic
volume is to install electronic data-collecting devices like cameras or sensing loops
on the road sections and around intersections. In this project, we use the original
data collected from devices installed around the intersections. This kind of data
is also known as traffic counts of turning volume. The road network topology
and traffic signal control scheme is the supply side while the demand side can be
described by traffic flows and/or Origin-Destination (OD) matrices. Compared
with OD investigation, the traffic count data is more convenient to deal with. For
those urban areas that fully facilitate loop detectors or video detection devices
(e.g., license plate recognition (LPR) devices) around the signalized intersections,
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it is easier and more accurate to capture the traffic demand by traffic counts of
signalized intersections, especially under low connected vehicle (CV) penetration
rates.

To effectively construct macroscopic traffic models for area-wide urban networks,
a fast matrix-based method is proposed to model the topological structure of the
road network which can be applicable to the finite capacity queuing network model.
This report aims to demonstrate the technical details of the proposed method which
thoroughly explains how the programming tool functions. The rest of the report
is organized as follows: All acronyms, abbreviations, and notations related to this
report are summarized in Chapter 1. Chapter 2 discusses the basic hierarchical
framework of the proposed method considering flow conservation which is suitable
for many urban road networks. Also, given a real-world road network, several
structural matrices are introduced to capture the supply capacity of the network.
In Chapter 3, we show the method of how to apply the proposed tool to the finite
capacity queuing network model, in which the demand pattern of the road network
is captured by the model’s exogenous parameters, external arrival rates and tran-
sition probability. Chapter 4 provides a case study that designs a typical toy road
network with assumed traffic counts. A step-by-step discussion can be found that
explains where those output matrices come from and whether the automatically
generated matrices are in accordance with manually calculated results that repre-
sent real-world circumstances. Chapter 5 gives the conclusion remarks and future
works.

1.1 Acronyms and abbreviations

Table 1.1: Acronyms and abbreviations.

Abbreviation Definition Abbreviation Definition
OD Origin-Destination LPR License Plate Recognition
CV Connected Vehicle

1.2 Notations
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Table 1.2: Notations (I)

Basic element of the network
i index of one queue
I total number of queues
N set of natural numbers
R set of real numbers
AI maximum number of the upstream queues for a single queue
BI maximum number of the downstream queues for a single queue
Smax maximum number of the corresponding signal phase for a single queue
PM total number of signal phases
In total number of signalized intersections
in maximum number of queues within one intersection

Structural matrix (supply pattern)
A0 initial upstream queue index matrix
Ā0 upstream relation matrix
A1 coded upstream queue index matrix
B0 initial downstream queue index matrix
B̄0 downstream relation matrix
B1 coded downstream queue index matrix
S0 initial signal phase index matrix
S̄0 signal relation matrix
S1 coded signal phase index matrix
S̄1 signal control indication matrix
S01 coded signal control indication matrix
P0 original signal phase index matrix
PD signal phase duration matrix
P̄0 intersection signal phase index matrix
P̄1 signal phase state matrix
P̄c coded signal phase state matrix

Intersection-level variables
gal actual green time of phase l [s]
gel effective green time of phase l [s]
ql flow rate of phase l
Y sum of the flow ratio
L total lost time [s]
tl lost time per phase [s]
n number of phases of the intersection
AR all-red time of the intersection [s]
P l
i set of phase indices of queue i

nl
i number of lanes that share the same queue index i

A yellow time [s]

3



Table 1.3: Notations (II)

Finite capacity queuing network model
ki storage capacity [veh]
Li lane length [m]
dmin minimal spacing between two vehicles [m]
d̄ average length of a single vehicle [m]
γi external arrival rate [veh/s]
λi total arrival rate [veh/s]
µ total service rate [veh/s]
µ̃i unblocking rate [veh/s]
µ̂i effective service rate [veh/s]
ρi traffic intensity
P f
i probability of being blocked by downstream spillback

Ni total number of vehicles in queue [veh]
P (Ni = ki) spillback probability
pij transition probability from queue i to queue j
Ai set of upstream queues of queue i
Bi set of downstream queues of queue i
s saturation flow rate [veh/s], usually 0.5 for a signalized lane
Ci signal cycle length [s]
λ̂i effective arrival rate [veh/s] = λi(1− P (Ni = ki))
ρ̂i effective traffic intensity = ρi(1− P (Ni = ki))

Matrix in general system of equations
K general storage capacity matrix
N l general lane number matrix
Λ general effective arrival rate matrix
PN general blocking probability matrix
ϱ general traffic intensity matrix
Γ general external arrival rate matrix
PA general upstream transition probability matrix
PB general downstream transition probability matrix
U general effective upstream ingress matrix
D1 general egress spillback probability matrix
D2 general effective egress traffic intensity matrix
M general service rate matrix
C general cycle length matrix
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Chapter 2

Network Topology Considering Flow
Conservation

2.1 Hierarchical network topology

The description of the road traffic network generally uses the method of graph the-
ory. In the process of handling urban road network problems, usually, the trans-
portation network is abstracted as an integration of nodes and links corresponding
to the intersections and road sections. Figure 2.1 gives a general introduction to
the hierarchy of the network topology. According to the graph theory, we define
that the network is composed of nodes and links and the nodes are connected with
each other by directed or undirected links.

Lane

Signalized 
IntersectionLink Node

Unsignalized 
Intersection

Queue

Segment

Figure 2.1: Hierarchical urban road network topology

Generally, intersections represented by nodes can be divided into signalized inter-
sections and unsignalized intersections for various considerations such as cross-road
hierarchy, traffic volume and safety. For those intersections that have high-class in-
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tersecting roads or weak safety environments, traffic signal control is a friendly and
cost-effective strategy for the traffic management sector to regulate high-volume
traffic and protect vulnerable participants from severe accidents. For other inter-
sections with lower traffic volume or slighter traffic conflict, there is less necessity
for traffic signal control to improve the efficiency of the road network. In practice,
yield-control design or stop-control design is set for safety considerations.

Figure 2.2: Link-oriented network topology

Once the signal arrangement is settled, the links between nodes should be an-
alyzed. For the road network in the transportation system, each road section
between two adjacent intersections is usually modeled as one or two directed links
depending on one-way or two-way streets. Also, some road sections are connected
with extraterritorial road sections which can be directly modeled as one link. From
another perspective, the whole researched network is divided into many closed
shapes by a set of links, and these shapes can represent blocks, communities, com-
mercial districts and public institutions which can be abstracted as a set of traffic
zones. In fact, the traffic zone is the point for trip attraction and generation fol-
lowed by a set of OD pairs. It can be also described as that some unsignalized
intersection is set for connecting internal links with the traffic zones from outside.
Figure 2.2 illustrates the link-oriented network topology which gives an example
of how a road network from the real world is transferred into analyzed network
topology. The green dotted line for both sub-figures is the research boundary
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which separates the research road network from the extraterritorial areas. The
deep gray solid line is the boundary of the block, which is represented by a light
gray rectangle. The flesh and light-yellow rectangles are streets and roads in the
real world. For link-based network topology, the red arrows represent trips (traffic
flows) generated from or attracted by the traffic zones (bounded by the purple
dotted rectangle), and the yellow arrows represent the external links which connect
research network with extraterritorial areas, both of them lead to external arrivals.
The blue arrows are internal links that correspond to the internal arrivals between
adjacent queues. The blue solid circle and the blue hollow circle represent signal-
ized and unsignalized intersections, respectively.

Here, we primarily pay attention to the hierarchy of the road network topology.
The interactions among traffic zones, links and extraterritorial road sections will
be discussed in the next section.

Figure 2.3: Queue-oriented network topology

Next, each link can be divided into one or a set of segments, where each road
section (segment) has the same number of lanes. When it comes to an intersection
or a variation of the number of lanes such as road widening or narrowing, the
boundary of the segment occurs to separate one road section into many. Then,
for each segment with the same number of lanes, each lane is modeled as a queue
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regardless of its width, slope and pavement material. Figure 2.3 gives a typical
example of how a road section is separated into a set of segments and how lanes in
each segment are modeled into a set of queues.

2.2 Consideration of flow conservation

Besides capturing the interactions between traffic zones and the internal road links,
another reason for setting an unsignalized intersection between two signalized in-
tersections is to consider flow conservation. In most cases, the sum of the turning
flows at the downstream signalized intersection (wishing to exit the link) does not
equal the sum of the corresponding turning flows at the upstream signalized inter-
section wishing to enter the link. So, the unsignalized intersection is set to balance
this difference. In this report, we assume that if the downstream flow sum is larger
than the upstream flow sum, then the flow difference refers to those flows that
enter the road network from the unsignalized intersection generated by the traffic
zone. Conversely, if the downstream flow sum is smaller than the upstream flow
sum, then the flow difference refers to those flows that exit the road network from
the unsignalized intersection attracted by the traffic zone.

2.3 Structural matrix for urban road network

After the set of the queuing model is completed, we need to identify the upstream
queues, downstream queues, and signal control mode for each queue. With this
information, we can obtain the topological matrix and the traffic signal control
matrix for the entire research road network. Note that i is the index of one queue
and I represents all queues within the research network.

2.3.1 Topological matrix

The topological matrix consists of matrices that can capture upstream and down-
stream relations among queues. Given a queuing model with I queues in total,
we first introduce the initial upstream queue index matrix A0 ∈ N I×AI , in which
AI is the maximum number of the upstream queues for a single queue. Each row
represents a queue in the network model and each column represents an upstream
queue. For those queues that have no upstream queues or have less than I upstream
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queues, the corresponding upstream queue index is 0. Next, we can obtain a binary
matrix Ā0 ∈ N I×AI (called upstream relation matrix) to capture the existence of
the upstream queues.

Ā0
ij =

{
0, A0

ij = 0,

1, A0
ij > 0.

(2.1)

For some matrix-based programming languages such as MATLAB (2022), the
index for matrices can not be zero. So, we replace the initial upstream queue index
matrix A0 ∈ N I×AI with the coded upstream queue index matrix A1 ∈ N I×AI , in
which

A1
ij =

{
1, A0

ij = 0,

A0
ij, A0

ij > 0.
(2.2)

Note that after the replacement, there are two different types of index ‘1’ in the
coded upstream queue index matrix. One is that queue ‘1’ is one of the upstream
queues for certain queues, with the corresponding element in Ā0 ∈ N I×AI equals to
one. The other is that means no (or no longer) upstream queues for certain queues,
with the corresponding element in Ā0 ∈ N I×AI equals zero. While indexing the
upstream queues, the upstream relation matrix must be applied together.

Similarly, we can obtain the downstream relation matrix B̄0 ∈ N I×BI and the
coded downstream queue index matrix B1 ∈ N I×BI based on the initial downstream
queue index matrix B0 ∈ N I×BI (BI is the maximum number of the downstream
queues for a single queue).

B̄0
ij =

{
0, B0

ij = 0,

1, B0
ij > 0.

(2.3)

B1
ij =

{
1, B0

ij = 0,

B0
ij, B0

ij > 0.
(2.4)

2.3.2 Traffic signal control matrix

In general, queues can be categorized into signalized and unsignalized queues. Sig-
nalized queues are usually controlled by at least one signal phase and each signal
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phase corresponds to one signal timing. To link each signalized queue with the cor-
responding signal phase (timing), we first introduce the initial signal phase index
matrix S0 ∈ N I×Smax, in which Smax is the maximum number of the corresponding
signal phase for a single queue. For unsignalized queues or signalized queues that
have less than Smax signal phases, the corresponding index is 0. Similar to the
upstream (downstream) queue index, we can also obtain a signal relation matrix
S̄0 ∈ N I×Smax and the coded signal phase index matrix S1 ∈ N I×Smax based on the
initial signal phase index matrix.

S̄0
ij =

{
0, S0

ij = 0,

1, S0
ij > 0.

(2.5)

S1
ij =

{
1, S0

ij = 0,

S0
ij, S0

ij > 0.
(2.6)

Next, we introduce a binary matrix S̄1 ∈ N I×Smax (signal control indication
matrix) to identify whether each queue is signalized, in which each row represents
a queue. For elements in the first column, if one queue is signalized, the element
is 1, and 0 otherwise. To keep all signal control matrix dimensions consistent, all
elements in other columns are filled with 0.

S̄1
ij =

{
−S̄0

ij + 1, j = 1,

0, j > 1.
(2.7)

Then, another binary matrix called the coded signal control indication matrix
S01 ∈ N I×Smax is designed.

S01
ij =

{
1, j = 1,

S̄0
ij, j > 1.

(2.8)

Suppose we have an urban network that has PM signal phases and In signalized
intersections, with each phase being numbered accordingly as in the original signal
phase index matrix P0 ∈ N 1×PM = [1 2 ... PM ] (also we have a signal phase duration
matrix PD ∈ N 1×PM = [ga1 ga2 ... gaPM

], where ga1 is the actual green time of phase
1). Here, the intersection signal phase index matrix P̄0 ∈ N In×Pm is proposed (Pm

is the maximum number of signal phases within one intersection). In this matrix,
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each row represents one intersection. For those intersections that have less than
Pm signal phases, the corresponding element is 0. Thus, we can also obtain a signal
phase state matrix P̄1 ∈ N In×Pm, where

P̄1 =

{
0, P̄0

ij = 0,

1, P̄0
ij > 0.

(2.9)

Similarly, we have the coded signal phase state matrix P̄c ∈ N In×Pm as well.

P̄c =

{
1, P̄0

ij = 0,

P̄0
ij, P̄0

ij > 0.
(2.10)

Note that in P̄c, there are also two kinds of ‘1’: the one that represents phase 1
and those elements that do not correspond to any signal phases (with P̄1

ij = 0).
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Chapter 3

Apply to Macroscopic Traffic Modeling:
Example of Finite Capacity Queuing
Network Model

For real-world urban road networks with intricate traffic behavior and sophisti-
cated management strategy, the macroscopic traffic model provides a general and
global approach to describe the status of the traffic flow through a simplified but
analytical methodology that is in accordance with the actual physical tendency
of the microscopic traffic model. In this section, we introduce the finite capacity
queuing network model proposed in the previous research by Osorio and Bierlaire
(2009) and Osorio (2010) which is known as a metamodel for solving large-scale
traffic signal control problems.

3.1 Between-queue interactions

As mentioned above, for a set of intersections, we need to identify the upstream-
downstream relationships between queues once the queue modeling is completed.
Also, we need to distinguish the internal arrivals from the internal network and
external network. For each queue in the network, it can be roughly categorized into
two types: the one that connects with extraterritorial road sections and the one that
connects with queues or traffic zones within the researched network. Nevertheless,
each queue is modeled as an M/M/1/k queue and has an arrival rate, a service
rate, and the storage capacity k according to the finite capacity queuing model.

Each queue’s arrival rate is composed of the external arrival rate and internal
arrival rate, usually in the vehicle per hour or vehicle per second. The external
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arrival rate means the customer arrives from the outside of the researched network
and has no connections with the status of the upstream queues. The external arrival
rate occurs when one queue’s upstream connects with extraterritorial road sections
or traffic zones that generate trips to the network. When there are upstream queues
within the studied network, the internal arrival rate of the queue happens as the
between-queue interactions of the arrival rate.

The service rate of each queue is the saturation flow rate multiplied by the corre-
sponding green split, which is also dependent on the corresponding characteristics.
If the downstream of the queue is connected with the extraterritorial road sections,
unsignalized intersections or other queues from another segment, the green split
equals 1. If the queue’s downstream is connected with the signalized intersection,
the green split equals the ratio of the summation of the green time of all phases
which gives right-of-way to this lane (queue) and the total cycle time of the signal-
ized intersection.

For storage capacity k, also known as the upper bound of each queue i, it is deeply
connected with the lane’s jam density which determines the number of vehicles in
waiting when the queue is full. Equation 3.1 gives a calculation method (notice the
one-to-one correspondence between lane and queue).

ki = ⌊Li + dmin

d̄+ dmin

⌋ (3.1)

where Li represents the length of lane i (in meters), dmin is the minimal spacing
between two vehicles (in meters), and d̄ denotes the average length of a single
vehicle (in meters). The final result of the storage capacity is an integer, which
means the maximum number of vehicles in queue i.

3.2 System of equations

3.2.1 Notations

The following notations are introduced ahead for queue i to illustrate the system
of equations combined with the between-queue interactions mentioned above.

13



γi external arrival rate [veh/s];
λi total arrival rate [veh/s];
µ total service rate [veh/s];
µ̃i unblocking rate [veh/s];
µ̂i effective service rate [veh/s];
ρi traffic intensity;
P f
i probability of being blocked by downstream spillback;

Ni total number of vehicles in queue [veh];
P (Ni = ki) spillback probability;
pij transition probability from queue i to queue j;
Ai set of upstream queues of queue i;
Bi set of downstream queues of queue i.

According to Chong (2017) and Chen et al. (2019), two additional variables are
defined as follows to further simplify the queuing network model in the number
of equations. The concept of effective means multiplying the probability of not
occurring spillback.

λ̂i effective arrival rate [veh/s];
ρ̂i effective traffic intensity;

3.2.2 System of equations

Next, we outline the core content of the finite capacity queuing network model
which has been given in detail in Chapter 4 of Osorio (2010). The formulation is
based on the physical components mentioned above which capture the entire arrival
and departure process for each queue.

Equation (3.2a) follows the rule of flow conservation, which means that the arrival
rate of queue i equals the summation of the arrivals from outside network and
upstream queues. If the queue is blocked by the arrivals (also known as spillback),
the subsequent arrivals can’t arrive in this queue, so Equation (3.2a) provides a
calculation approach that multiplies arrival rates with the probability that queue i
is not full. Correspondingly, Equation (3.2b) calculates the unblocking rate which
is the rate that dissipates the downstream spillback of queue i. Equation (3.2c)
gives the definition of the effective service rate, which is the function of the ideal
service rate of queue i, of the probability of being blocked at queue i because of
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downstream spillback which is defined as Equation (3.2d), and of the unblocking
rate for downstream spillback of queue i. Equation (3.2e) defines the spillback
probability of queue i, which is calculated by the traffic density defined in Equation
(3.2f).



λi = γi +

∑
h∈Ai

phiλh(1− P (Nh = kh))

1− P (Ni = ki)
(3.2a)

1

µ̃i
=

∑
j∈Bi

λj(1− P (Nj = kj))

λi(1− P (Ni = ki))µ̂i
(3.2b)

1

µ̂i
=

1

µi
+ P i

f

1

µ̃i
(3.2c)

P f
i =

∑
j∈Bi

pijP (Nj = kj) (3.2d)

P (Ni = ki) =
1− ρi

1− ρk+1
i

ρki (3.2e)

ρi =
λi

µ̂i
(3.2f)

Then, combined with the original system of equations, the simplified tractable
system of equations can be obtained as follows.



λ̂i = γi(1− P (Ni = ki)) +
∑
h∈Ai

phiλ̂h (3.3a)

ρ̂i =
λ̂i

µi
+ (

∑
j∈Bi

pijP (Nj = kj))(
∑
j∈Bi

ρ̂j) (3.3b)

P (Ni = ki) =
1− ρ̂i

1− ρ̂k+1
i

ρ̂ki (3.3c)
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3.3 Determination of exogenous parameters using traffic counts

3.3.1 A simplified modeling method for large-scale queuing network

For high-density road networks with several lanes on each link, there is a way to
simplify modeling and programming procedures while guaranteeing the model’s
accuracy. According to Osorio (2010), if a queue connects to a segment, it means
that this queue is connected to all the queues in that segment. On this basis, if
several queues have the same arrival rates (same upstream queues), service rates
(same downstream queues and controlled by the same signal), and upper bound,
they can share the same queue indices. Two common conditions are suitable for
this simplification. One is that the approaching lanes of the intersection have the
same function of turning, and the other is that the exit lanes of the intersection.

Although it appears that the number of the queue indices decreases after the
simplification, it must be cautious while calculating the arrival rate and transi-
tion probability of each queue. Still, the whole process is governed by the rule of
flow conservation. We then provide the calculation method for transferring traffic
volume into arrival rate and transition probability considering the two conditions
mentioned above.

3.3.2 External arrival rate

For queues on the exit lanes or do not directly connect with the traffic zones, the
external arrival rate is zero. As mentioned in Section 2.2, the flow difference equals
the outflow from the downstream signalized intersection minus the inflow from the
upstream signalized intersection (the inflow of internal links is zero). If the differ-
ence is zero or negative, the external rate of the queue linking to the downstream
intersection is 0. Otherwise, the difference should be distributed according to the
downstream turning flow. Note that one queue corresponds to one lane, so the
external arrival rates should be normalized as “veh/s/lane” following the internal
arrival rates.

3.3.3 Between-queue transition probability

In this section, we mainly focus on the transition probability between the target
queue and the upstream queue, which refers to the “phi” in Equation (3.2a) and

16



(3.3a). The transition probability between the target queue and the downstream
queue can be obtained based on the “phi”. First, the transition probability of queues
on the external link is zero for there is no upstream queue. Next, the transition
probability of queues on the exit lanes equals the reciprocal of the number of exit
lanes multiplied by the proportion of vehicles in the upstream queue turning to the
target queue. If the upstream queue corresponds to a dedicated turning lane, the
proportion is 1. Finally, the transition probability of queues corresponding to the
approaching lanes equals the reciprocal of the number of lanes that share the same
queue index multiplied by the proportion of vehicles in the upstream queue turning
to the target queue.

3.4 General system of equations for grid-level programming

Combined with the structural matrix proposed in Section 2.3.2 and the simplified
modeling method proposed in Section 3.3, we can formulate the general system of
equations for the simplification of grid-level programming.

Let us assume that after the simplification method, the given urban road network
can be modeled by I queues in total. On top of the following steps, we can initially
determine the storage capacity ki and the number of lanes that share with the
same queue indices (i.e., have the same arrival and service rate) for each queue i,
thus forming up the general storage capacity matrix K = [k1 k2 ... kI ], ki ∈ R1×I ,
i ∈ {1, 2, ..., I} and the general lane number matrix N l = [nl

1 nl
2 ... nl

I ], n
l
i ∈ R1×I ,

i ∈ {1, 2, ..., I}, respectively. In addition, we set the general effective arrival rate
matrix Λ = [λ̂1 λ̂2 · · · λ̂I ], λ̂i ∈ R1×I , i ∈ {1, 2, · · · , I}, the general blocking
probability matrix PN = [P (N1 = k1) P (N2 = k2) · · · P (NI = kI)], P (Ni = ki) ∈
R1×I , i ∈ {1, 2, · · · , I}, and the general traffic intensity matrix ϱ = [ρ1 ρ2 ... ρI ], ρi ∈
R1×I , i ∈ {1, 2, · · · , I}.

Besides, following the definitions in Section 2.3.2, we can obtain the upstream &
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downstream relation matrix (i.e., Ā0 =
Ā0

11 · · · Ā0
1j · · · Ā0

1AI... . . . ... . . . ...
Ā0

i1 · · · Ā0
ij · · · Ā0

iAI... . . . ... . . . ...
Ā0

I1 · · · Ā0
Ij · · · Ā0

IAI


, Ā0

ij ∈ N I×AI , i ∈ {1, 2, ..., I}, j ∈ {1, 2, ..., AI} and B̄0 =
B̄0

11 · · · B̄0
1j · · · B̄0

1BI... . . . ... . . . ...
B̄0

i1 · · · B̄0
ij · · · B̄0

iBI... . . . ... . . . ...
B̄0

I1 · · · B̄0
Ij · · · B̄0

IAI


, B̄0

ij ∈ N I×BI , i ∈ {1, 2, ..., I}, j ∈ {1, 2, ..., BI}, in which AI and BI are the
maximum numbers of the upstream and downstream queues for a single queue,
respectively). Similarly, we can also obtain the coded upstream & downstream
queue index matrix (i.e., A1 =

A1
11 · · · A1

1j · · · A1
1AI... . . . ... . . . ...

Ā0
i1 · · · Ā0

ij · · · Ā0
iAI... . . . ... . . . ...

Ā0
I1 · · · Ā0

Ij · · · Ā0
IAI


, A1

ij ∈ N I×AI , i ∈ {1, 2, ..., I}, j ∈ {1, 2, ..., AI} and B1 =
B1

11 · · · B1
1j · · · B1

1BI... . . . ... . . . ...
B̄0

i1 · · · B̄0
ij · · · B̄0

iBI... . . . ... . . . ...
B̄0

I1 · · · B̄0
Ij · · · B̄0

IAI


, B1

ij ∈ N I×BI , i ∈ {1, 2, ..., I}, j ∈ {1, 2, ..., BI}).
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Based on the traffic count data, we can first obtain the external arrival rate γi
for each queue i, which is the element of the general external arrival rate matrix
Γ = [γ1 γ2 ... γI ], γi ∈ R1×I , i ∈ {1, 2, ..., I}. Then, the upstream transition
probability pAhi and the downstream transition probability pBij can be calculated
referring to the rules in Section 3.3, and correspondingly can acquire the general
upstream transition probability matrix PA =

pA11 · · · pA1i · · · pA1AI... . . . ... . . . ...
pAh1 · · · pAhi · · · pAhAI... . . . ... . . . ...
pAI1 · · · pAIh · · · pAIAI


, h ∈ {1, 2, ..., I}, i ∈ {1, 2, ..., AI}, and the general downstream transition proba-
bility matrix PB = 

pB11 · · · pB1j · · · pB1BI... . . . ... . . . ...
pBi1 · · · pBij · · · pBiBI... . . . ... . . . ...
pBI1 · · · pBIj · · · pBIBI


, i ∈ {1, 2, ..., I}, j ∈ {1, 2, ..., BI}.

Next, we introduce the general matrix U , D1, and D2 for effective upstream
ingress

∑
h∈Ai

phiλ̂h, egress spillback probability (
∑
j∈Bi

pijP (Nj = kj)), and effective

egress traffic intensity (
∑
j∈Bi

ρ̂j), respectively. Therefore, constrained by the rule of

flow conservation, we can reorganize the system of equations of the finite queuing
network model. The definition of the three general matrices is defined as follows:

U =

AI∑
j=1

Ā0
:,j ◦ pA:,j ◦ (N l(A1,A1

:,j
) ◦ Λ1,A1

:,j
) (3.4)

D1 =

BI∑
j=1

B̄0
:,j ◦ pB:,j ◦ (N l(B1,B1

:,j
) ◦ PN(B1,B1

:,j
)) (3.5)
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D2 =

BI∑
j=1

B̄0
:,j ◦ (N l(B1,B1

:,j
) ◦ ϱ(B1,B1

:,j
)) (3.6)

Here, we define two additional rules of computation similar to the Hadamard
(elementwise) product. It is well known that for two matrices a, b ∈ RI×J , we have:

a ◦ b =


a11 · · · a1j · · · a1J
... . . . ... . . . ...
ai1 · · · aij · · · aiJ
... . . . ... . . . ...
aI1 · · · aIj · · · aIJ

 ◦


b11 · · · b1j · · · b1J
... . . . ... . . . ...
bi1 · · · bij · · · biJ
... . . . ... . . . ...
bI1 · · · bIj · · · bIJ



=


a11 × b11 · · · a1j × b1j · · · a1J × b1J

... . . . ... . . . ...
ai1 × bi1 · · · aij × bij · · · aiJ × biJ

... . . . ... . . . ...
aI1 × bI1 · · · aIj × bIj · · · aIJ × bIJ



(3.7)

Analogously, we define the elementwise quotient “◦÷” and the elementwise ex-
ponent “◦◦” as follows:

a ◦ ÷b =


a11 · · · a1j · · · a1J
... . . . ... . . . ...
ai1 · · · aij · · · aiJ
... . . . ... . . . ...
aI1 · · · aIj · · · aIJ

 ◦ ÷


b11 · · · b1j · · · b1J
... . . . ... . . . ...
bi1 · · · bij · · · biJ
... . . . ... . . . ...
bI1 · · · bIj · · · bIJ



=


a11 ÷ b11 · · · a1j ÷ b1j · · · a1J ÷ b1J

... . . . ... . . . ...
ai1 ÷ bi1 · · · aij ÷ bij · · · aiJ ÷ biJ

... . . . ... . . . ...
aI1 ÷ bI1 · · · aIj ÷ bIj · · · aIJ ÷ bIJ



(3.8)

20



a ◦◦ b =


a11 · · · a1j · · · a1J
... . . . ... . . . ...
ai1 · · · aij · · · aiJ
... . . . ... . . . ...
aI1 · · · aIj · · · aIJ

 ◦◦


b11 · · · b1j · · · b1J
... . . . ... . . . ...
bi1 · · · bij · · · biJ
... . . . ... . . . ...
bI1 · · · bIj · · · bIJ



=


ab1111 · · · a

b1j
1j · · · ab1J1J... . . . ... . . . ...

abi1i1 · · · a
bij
ij · · · abiJiJ... . . . ... . . . ...

abI1I1 · · · a
bIj
Ij · · · abIJIJ



(3.9)

Finally, we can formulate the general system of equations for grid-level program-
ming: 

Λ = Γ ◦ (E1×I − PN) + U (3.10a)
ϱ = Λ ◦ ÷M +D1 ◦D2 (3.10b)
PN = (E1×I − ϱ) ◦ (ϱ ◦◦ (K)) ◦ ÷(E1×I − ϱ ◦◦ (K + E1×I)) (3.10c)

where M is the general service rate matrix M = [µ1 µ2 ... µI ], µi ∈ R1×I , i ∈
{1, 2, ..., I}. For queue i’s service rate µi, it is equal to the green split multiplied
by the saturation flow rate s (P l

i is the set of phase indices of queue i).

µi = s

∑
l∈P l

i
gel

Ci
(3.11)

For each queue, we can utilize the traffic signal control matrices established
in Section 2.3.2 to simplify the calculation workload of the service rate. These
matrices have classified all queues into signalized and unsignalized, and they also
help to link each signalized queue with the corresponding phase duration.

M = s(

Pm∑
j=1

(PD(S1
:,j) ◦ S̄0

:,j + S̄1
:,j ◦ CT ) ◦ S01

:,j )
T ◦ ÷C (3.12)

where C = [C1 C2 ... CI ], Ci ∈ N 1×I , i ∈ {1, 2, ..., I} is the general cycle length
matrix.
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Chapter 4

Case Study

We design a simple yet typical urban road network in this chapter to illustrate the
applied procedure of the proposed matrix-based method. The topology of the ex-
ample network is shown in Figure 4.1, which consists of two signalized intersections
and one unsignalized intersection. The assumed traffic counts collected by traffic
monitoring devices are listed in Table 4.1.

Int. 1
Int. 2

Phase #:       1             2              3 Phase #:      4          5         6          7

Figure 4.1: Example urban road network
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Table 4.1: Traffic counts of the example network (Unit: veh/h)

Intersection Eastbound Northbound Westbound Southbound
Left Through Right Left Through Right Left Through Right Left Through Right

1 0 550 400 700 0 650 200 400 0 0 0 0
2 400 2100 300 50 40 30 200 800 100 30 40 50

4.1 Topological information

According to certain principles described in Section 2.1, lanes in the proposed urban
road network can be modeled into several queues. Based on the simplification
method proposed in Section 3.3, those queues that share the same arrival rate,
service rate and storage capacity can be amalgamated (represented by one queue
index). Hence, we can obtain the topological information as shown in Figure 4.2,
modeling the network in 24 queues (total number of queues, I = 24). It can be
also concluded from the figure that the total number of signalized intersections In
is 2, while the maximum number of queues within one intersection in is 14 (see
Intersection 2).
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2222

Int. 1
Int. 2

Figure 4.2: Topological information

Table 4.2 summarizes the overall topological information and exogenous param-
eters for all modeled queues. Here, we locally numbered 24 queues in a counter-
clockwise order in each intersection as in the second column of the table (represent
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corresponding (row, column) in the following matrices), and correspondingly num-
bered all queues globally from 1 to 24 as in the third column. For example, queue
No. 11 is the first queue being numbered in Intersection 2, and it links with the
2nd-row-1st-column element in the following matrices.

Table 4.2: Topological information and exogenous parameters

Intersection Queue indices (i) Turning Number of Flow External arrival rates Upstream queue phi

indices Local Global lanes N lT (veh/h/lane) (veh/h/lane) ΓT indices (h)

1

(1,1) 1 T 1 550 550 - 0
(1,2) 2 R 1 400 400 - 0
(1,3) 3 E 2 300 0 (1,2) 0.5

(1,7) 0.5
(1,4) 4 L 1 700 700 - 0
(1,5) 5 R 1 650 650 - 0
(1,6) 6 E 2 600 0 (1,1) 0.5

(1,5) 0.5
(1,7) 7 L 1 200 0 (1,9) 0.333
(1,8) 8 T 1 400 0 (1,9) 0.667
(1,9) 9 LT 1 600 0 (2,14) 0.667
(1,10) 10 E 2 550 0 (1,4) 0.5

(1,7) 0.5

2

(2,1) 11 L 2 200 114.286 (1,6) 0.071
(2,2) 12 T 2 700 400 (1,6) 0.25
(2,3) 13 T 1 700 0 (1,9) 0.7
(2,4) 14 R 1 300 0 (1,9) 0.3
(2,5) 15 TR 1 1000 571.428 (2,14) 0.357
(2,6) 16 E 2 270 0 (2,4) 0.5

(2,9) 0.5
(2,13) 0.167

(2,7) 17 LTR 1 120 120 - 0
(2,8) 18 E 3 720 0 (2,2) 0.333

(2,3) 0.333
(2,7) 0.083
(2,13) 0.083

(2,9) 19 L 1 200 200 - 0
(2,10) 20 T 1 800 800 - 0
(2,11) 21 R 1 100 100 - 0
(2,12) 22 E 2 270 0 (2,1) 0.5

(2,7) 0.167
(2,11) 0.5

(2,13) 23 LTR 1 120 120 - 0
(2,14) 24 E 2 450 0 (2,7) 0.208

(2,10) 0.5
(2,13) 0.208
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4.1.1 Channelization information for queues

There are generally two kinds of channelization schemes: the left-turn storage lane
and the right-turn channelization island (similar to the right-turn storage lane).
For queues belonging to downstream lanes, the corresponding value of the element
in the channelization information matrix equals 1, and 2 for upstream queues.
All other normal queues and nonexistent queues are 0. So, the channelization
information matrix of the example network is shown as follows:[

0 0 0 0 0 0 1 1 2 0 0 0 0 0
0 0 1 1 2 0 0 0 0 0 0 0 0 0

]
4.1.2 Turning information for queues

For those queues on approaching lanes, each queue has specific turning according
to lane functions. The element of the turning information matrix is filled with
different lane functions: left-turn (L), through (T), right-turn (R), left-through
(LT), through-right (TR), left-right-turn (LR), and all turns (LTR) for a single
lane. For queues on exit lanes, we use “E” as the element of the turning information
matrix. Combined with the topological information in Figure 4.2, we can obtain
the turning information matrix for the example network:{

T R E L R E L T LT E [] [] [] []
L T T R TR E LTR E L T R E LTR E

}
4.1.3 Number of lanes information for queues

In the fifth column of Table 4.2, the number of lanes for each queue (see N l) is
listed according to the rules discussed in Section 3.3. The lane number matrix can
be reshaped based on N l as follows:[

1 1 1 1 1 2 1 1 1 2 0 0 0 0
2 2 1 1 1 2 1 4 1 1 1 2 1 2

]
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4.1.4 Signal phase information for queues

For two signalized intersections, let us assume that the designed signal phase se-
quences as Figure 4.1. Seven signal phases have been numbered accordingly (total
number of signal phases PM = 7 and maximum number of signal phases within one
intersection Pm = 4 (in Intersection 2)). For un-signalized queues (e.g., queue No.
10), the element of queue signal phase matrix is 0.5 (also known as the default value
of saturated flow rate 0.5 veh/s). If a queue is controlled by one phase (e.g., queue
No. 1), that element is equal to the phase number. If a queue is controlled by
two phases (e.g., queue No. 5), that element shall be written as ‘[phase-1 phase-2]’.
In this case, the maximum number of the corresponding signal phase for a single
queue, Smax = 2.{

1 0.5 0.5 3 [2 3] 0.5 2 [1 2] 0.5 0.5 [] [] [] []
4 5 5 0.5 0.5 0.5 7 0.5 4 5 0.5 0.5 6 0.5

}
4.1.5 Segment information for queues

Based on the segment-lane-queue hierarchy (Section 2.1), each queue is linked to
a segment in an intersection. In this version of the tool, the segments are num-
bered counter-clockwise with the eastbound being 1. Hence, we can get the queue-
segment matrix: [

1 1 2 2 2 3 3 3 3 1 0 0 0 0
1 1 1 1 1 2 2 3 3 3 3 4 4 1

]
4.1.6 Relationship information for segments

Each segment is numbered locally in the last step, so we need two numbers to
specifically represent segments as ‘[Intersection-index Segment number]’. As for
the upstream-downstream relationships among segments, we use the segment re-
lationship information matrix, in which the columns refer to all segment numbers
and the rows represent all intersection indices. If the segment has no upstream seg-
ment, the element is 0. If it has, the element is the global number of the upstream
segment ‘[Intersection-index Segment number]’. For the toy network, its segment
relationship information matrix is:
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{
0 0 [2 1] 0

[1 3] 0 0 0

}
4.1.7 Relationship information for queues

After the completion of the above steps, particularly with the assistance of the
queue turning information and the segment relationship information, the between-
queue relationships (i.e., column 8 of Table 4.2) can be reshaped into two matrices
(the initial upstream & downstream queue index matrix A0, B0 in Section 2.3.2)
that can show upstream-downstream relationship for all queues. Based on the
network topology, for the example network, the maximum number of the upstream
queues AI = 4 and that of the downstream queues BI = 3. And the initial upstream
and downstream queue index matrix, A0 and B0, can be obtained.

A0 =


0 0 2 0 0 1 9 9 24 4 6 6 15 15 6 14 0 12 0 0 0 11 0 17
0 0 7 0 0 5 0 0 0 8 0 0 0 0 0 19 0 13 0 0 0 17 0 20
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 17 0 0 0 21 0 23
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0


T

B0 =

6 3 0 10 6 11 3 10 7 0 22 18 18 16 13 0 18 0 16 24 22 0 16 9
0 0 0 0 0 12 0 0 8 0 0 0 0 0 14 0 22 0 0 0 0 0 18 0
0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 24 0

T

According to the rules in Section 2.3.2, we can get the upstream & downstream
relation matrix (Ā0 and B̄0) and the coded upstream & downstream queue index
matrix (A1 and B1).

Ā0 =


0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 1
0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0


T

B̄0 =

1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1
0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

T
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A1 =


1 1 2 1 1 1 9 9 24 4 6 6 15 15 6 14 1 12 1 1 1 11 1 17
1 1 7 1 1 5 1 1 1 8 1 1 1 1 1 19 1 13 1 1 1 17 1 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 23 1 17 1 1 1 21 1 23
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 23 1 1 1 1 1 1


T

B1 =

6 3 1 10 6 11 3 10 7 1 22 18 18 16 13 1 18 1 16 24 22 1 16 9
1 1 1 1 1 12 1 1 8 1 1 1 1 1 14 1 22 1 1 1 1 1 18 1
1 1 1 1 1 15 1 1 1 1 1 1 1 1 1 1 24 1 1 1 1 1 24 1

T

4.2 Flow information

Till now, the topological information details have been captured by six matrices.
Next, Figure 4.3 assigned the traffic counts in Table 4.1 to each queue (column 6
in Table 4.2).
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Figure 4.3: Queue traffic flow

4.2.1 External arrival rate

The external arrival rates for all queues are listed in column 7 of Table 4.2 (the
general external arrival rate matrix ΓT ). Here, we show the detailed calculation
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process of queue No. 11 (2,1) which represents the left-turn lanes of the eastbound
Int.2: The segment [2 1] receives 1200 vehicles from the upstream segment [1 3]
while departing 2800 vehicles, which indicates that 1600 vehicles enter from the
outside network as external arrivals. Assume we allocate these external arrivals
proportionally to queues No. 11, 12, and 15, The external arrival rate of queue
No.11 can be calculated as the following equation:

γ11 = 1600× 200

200 + 200 + 700 + 700 + 1000
≈ 114.286 veh/h/lane (4.1)

4.2.2 Transition probability

The calculation of the transition probability is highly related to the upstream-
downstream inter-queue relationships. The results are shown in column 9 of Table
4.2. We demonstrate the calculation process of two typical queues (No. 11 and No.
18).

Queue No. 11 has an external arrival rate of 114.286 veh/h, and its upstream
queue is queue No. 6. So, we should exclude the external arrivals from the outside
network while calculating the transition probability. Next, the flow of queue No. 6
is 600 veh/h, thus we can gain the final result as follows:

p6−11 =
(200− 114.286)/2

600
=

(85.714)/2

600
≈ 0.071 (4.2)

note that 85.714 vehicles are coming from the upstream segment [1 3] which has
two lanes. For each lane, it uniformly transfers 85.714/2 vehicles to one lane of
queue No. 11, and that is why we have that division by 2.

Queue No. 18 has no external arrivals but four upstream queues (No. 12, 13,
17, 23). All vehicles in Queue No. 12 and 13 go to Queue No. 18. For queue No.
12, two lanes’ through flows connect with three lanes. So, for each lane of queue
No. 18, we have:

p12−18 =
(700)/3

700
=

(233.333)

700
≈ 0.333 (4.3)
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and similarly:

p13−18 =
(700)/3

700
=

(233.333)

700
≈ 0.333 (4.4)

Queue No. 17 has 30 veh/h right-turn flow with a total flow of 120 veh/h. These
30 vehicles will be uniformly distributed to three lanes of queue No. 18. As a
result, we can get:

p17−18 =
(30)/3

120
=

(10)

120
≈ 0.083 (4.5)

and similarly:

p23−18 =
(30)/3

120
=

(10)

120
≈ 0.083 (4.6)

The general upstream & downstream transition probability matrix PA and PB

are as follows:

A0 =


0 0 .5 0 0 .5 .333 .667 .667 .5 .071 .25 .7 .3 .357 .5 0 .333 0 0 0 .5 0 .208
0 0 .5 0 0 .5 0 0 0 .5 0 0 0 0 0 .5 0 .333 0 0 0 .167 0 .5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .167 0 .083 0 0 0 .5 0 .208
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .083 0 0 0 0 0 0


T

B0 =

.5 .5 0 .5 .5 .071 .5 .5 .333 0 .5 .333 .333 .5 .7 0 .083 0 .5 .5 .5 0 .167 .667
0 0 0 0 0 .25 0 0 .667 0 0 0 0 0 .3 0 .167 0 0 0 0 0 .083 0
0 0 0 0 0 .357 0 0 0 0 0 0 0 0 0 0 .208 0 0 0 0 0 .208 0

T

4.3 Signal timing information

4.3.1 Traffic signal information matrix for queues

Referring to Section 2.3.2, we first gain the initial signal phase index matrix S0 for
the network. Here, the original signal phase index matrix P0 = [1 2 3 4 5 6 7].

S0 =

[
1 0 0 3 2 0 2 1 0 0 4 5 5 0 0 0 7 0 4 5 0 0 6 0
0 0 0 0 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]T
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Therefore, we can also obtain the signal relation matrix S̄0 and the coded signal
phase index matrix S1 based on S0:

S̄0 =

[
1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 0 1 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]T

S1 =

[
1 1 1 3 2 1 2 1 1 1 4 5 5 1 1 1 7 1 4 5 1 1 6 1
1 1 1 1 3 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

]T
Finally, we have the signal control indication matrix S̄1 and the coded signal

control indication matrix S01

S̄1 =

[
0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 1 0 1 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]T

S̄01 =

[
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]T
4.3.2 Webster’s method

We apply Webster’s method Webster (1958) to get the signal timings for the ex-
ample network. A step-by-step introduction to the Webster method can be found
in Appendix A. In this section, we provide the detailed calculation process for the
toy network.

For both intersections, the sum of the flow ratio Y is calculated (assume the
saturation flow rate equals 1800 veh/h/lane for all lanes):

YI =
550 + 200 + 700

1800
= 1450/1800 (4.7)

YII =
200 + 800 + 120 + 120

1800
= 1240/1800 (4.8)

Assume no all-red time for both intersections, and we can get the total lost time
L.

31



LI = 3× 3 = 9 s (4.9)

LII = 4× 3 = 12 s (4.10)

Next, we can find the best cycle length C that can be divided evenly by 5.

CI =
1.5× 9 + 5

1− 1450/1800
≈ 100 s (4.11)

CII =
1.5× 12 + 5

1− 1240/1800
≈ 75 s (4.12)

Consequently, the general cycle length matrix C =[
100 100 100 100 100 100 100 100 100 100 75 75 75 75 75 75 75 75 75 75 75 75 75 75

]
Then, the effective green time ge for each phase can be figured based on the total

effective green time Ge:

GeI = 100− 9 = 91 s (4.13)

GeII = 75− 12 = 63 s (4.14)

ge1 = 91× 550/1800

1450/1800
≈ 34 s (4.15)

ge2 = 91× 200/1800

1450/1800
≈ 13 s (4.16)

ge3 = 91× 700/1800

1450/1800
≈ 44 s (4.17)

ge4 = 63× 200/1800

1240/1800
≈ 10 s (4.18)

ge5 = 63× 800/1800

1240/1800
≈ 41 s (4.19)

ge6 = ge7 = 63× 120/1800

1240/1800
≈ 6 s (4.20)
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Finally, the actual green times are calculated and are also the elements of the
signal phase duration matrix PD.

PD =
[
37 16 47 13 44 9 9

]T
4.3.3 Traffic signal information matrix for intersections

The phase indices for each intersection are arranged in order from smallest to largest
in each row of the intersection signal phase index matrix P̄0. The signal phase state
matrix and the coded signal phase state matrix are also listed as follows.

P̄0 =

[
1 2 3 0
4 5 6 7

]
P̄1 =

[
1 1 1 0
1 1 1 1

]
P̄c =

[
1 2 3 1
4 5 6 7

]
Eventually, we can finish this case by calculating the service rate for all queues

according to the method in Section 3.4.

M =
[
.17 .5 .5 .22 .3 .5 .065 .25 .5 .5 .067 .273 .273 .5 .5 .5 .04 .5 .067 .273 .5 .5 .04 .5

]
Here, we show the calculation process of the service rate under Webster’s scheme

for Queue No. 5 and 17:

µ5 = 0.5× 16 + 47− 3

100
= 0.03 (4.21)

and similarly:

µ17 = 0.5× 9− 3

75
= 0.04 (4.22)
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Chapter 5

Conclusion

This report introduces the theoretical basis of a proposed matrix-based program-
ming tool that can use network topology and traffic counts at signalized inter-
sections to generate matrices that can capture the supply and demand pattern
for large-scale urban networks. The hierarchical network topology has been dis-
cussed to decompose the urban road network while the rule of flow conservation
is strictly followed. Based on the real-world network topology and traffic signal
control schemes, several structural matrices are raised to link queues with their
upstream & downstream queues and the corresponding signal phases. To apply
the tool for macroscopic traffic modeling, we discuss the procedure of establishing
the finite capacity queuing network model as an example. In this model, the de-
mand pattern is mainly captured by two exogenous parameters, the external arrival
rate and the transition probability, and the supply pattern is represented by the
service rate, all of which can be effectively calculated via the proposed tool. A
simple but typical case study is demonstrated in detail which validates the effec-
tiveness of the proposed tool. The example network has been embedded in the
open access code. Users can find that the matrices automatically generated by the
tool are aligned with the results calculated by the step-by-step procedure.

Further study can focus on the influence of this tool on the accuracy of the
macroscopic traffic model in terms of capturing network-level traffic flow dynam-
ics. Also, with additional matrices involved in solving the system of equations, it is
unknown whether the introduction of those matrices would significantly affect the
computational efficiency. What’s more, the U-turn will be included in the channel-
ization information matrix which will further influence the traffic flow assignment
among queues.
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Appendix A

Webster method

We introduce how we calculate the signal timing by the Webster method (a tradi-
tional method for isolated intersections).

Step 1: Calculate the sum of the flow ratio Y according to Equation (A.1) based
on Equation (A.2):

yl =
ql
s

(A.1)

Y =
∑
l

yl (A.2)

yl: the flow rate of each phase; ql: the traffic volume of critical lane l (veh/h); s:
the saturation traffic flow rate (veh/h);

Step 2: Figure out the total lost time L according to Equation (A.3):

L = ntl + AR (A.3)
tl: the lost time per phase, usually equals 3 s if no accurate data (s); n: the

number of phases of the intersection; AR: the all-red time for the intersection (s);
Step 3: Figure out the best cycle length calculated by the Webster method C

according to Equation (A.4):

C =
1.5l + 5

1− Y
(A.4)

Step 4: Figure out the total effective green time Ge by Equation (A.5):
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Ge = C − L (A.5)
Step 5: Figure out the effective green time of phase l gel by Equation (A.6):

gel = Ge
yl
Y

(A.6)

Step 6: Figure out the actual green time of phase l gal by Equation (A.7):

gal = gel + A (A.7)
A: the yellow time (s), usually 3 seconds.
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