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ABSTRACT 1 
Time-of-day (TOD) fixed timing is the most common signal control strategy in practice, and it also set a 2 
foundation for real-time signal control strategy (e.g., actuated or adaptive) by providing basic background 3 
signal plans. Usually, the TOD fixed timing is designed to accommodate structural changes in traffic 4 
demand patterns over a typical day. To generate an efficient TOD interval plan with robust signal timings, 5 
this paper proposed a bi-level optimization framework in which the duration of each TOD interval and 6 
signal timings are the decision variables under the objective of overall efficiency at the upper level and 7 
robustness at the lower level. Delay is selected as the performance indicator and calculated based on 8 
polygon areas enclosed by accumulative arrival and departure curves. A TOD interval regulation method 9 
is also designed to include integer signal cycles to facilitate signal control transition between different 10 
TOD intervals. A bilevel evolutionary algorithm based on quadratic approximations (BLEAQ-II) is 11 
applied to solve the optimization problem. Finally, a SUMO simulation experiment is conducted to verify 12 
the performance of the proposed methodology. The results show the effectiveness and robustness of the 13 
proposed method over the existing TOD partition approaches. 14 
Keywords: TOD intervals, Robust signal timing, Bi-level Optimization, Isolated intersection   15 



Jia, An, Lu, Xia  

3 
 

INTRODUCTION 1 
Time-of-day (TOD) fixed timing, actuated signal control, and adaptive signal control are the three 2 

most recognizable signal control strategies in practice (1). The traffic community has witnessed the 3 
advantages of actuated and adaptive signal control strategies to accommodate traffic fluctuation and their 4 
optimality to minimize vehicle delay (2). Nevertheless, the TOD fixed timing strategy is still the most 5 
widely adopted approach to managing traffic signals for the following reasons: (i) it can balance the effect 6 
of traffic demand fluctuation within the day and potentially high equipment and computational budget of 7 
other advanced signal control strategies. (ii) it can maintain relatively simple but stable signal operations 8 
to account for frequent pedestrian crossing and traffic signal coordination.  9 

Typically, TOD fixed timings will be applied to the same period on multiple days (3), and each 10 
period is known as the TOD interval. The core challenge in designing a TOD fixed signal timing scheme 11 
is to balance the optimality and robustness of signal control. It is not uncommon to see that the fixed 12 
timing traffic signal plans are too conservative to cause large waste of green or less robustness or to cause 13 
frequent phase failures. In literature, this problem is addressed by properly partitioning the TOD control 14 
interval and robustly optimizing signal timing. In general, this is achieved by two independent procedures. 15 
The structural traffic demand changes would be first identified based on traffic volume data to partition 16 
one day into multiple TOD intervals (3), and then the optimized signal timings will be generated for each 17 
TOD interval with the objectives such as worst-case delay minimization (4). In a real application, the 18 
independent two-stage method may face the following problems:  19 

On the one hand, the two-stage method cannot effectively consider the effect of TOD partitions 20 
on signal control efficiency. The optimality of a TOD signal control plan is reflected by the total 21 
efficiency (e.g., control delay) accumulated over all intervals. Therefore, the TOD partition scheme and 22 
the signal timings jointly determine the signal control efficiency (5). Thus, the optimal similarity of traffic 23 
demand is not equivalent to the optimal TOD signal control efficiency at intersections because of their 24 
nonlinear relationship (6). More importantly, in the congestion dissipation stage, although the traffic 25 
demand has begun to decrease, there may still be residual vehicles that have not been completely 26 
discharged. If the TOD control plan is switched at this time, the residual vehicles would not be able to 27 
dissipate in time.  28 

On the other hand, the two-stage method is difficult to collectively balance the contradiction 29 
between efficiency and robustness. The existing research mostly focuses on the robust optimization of 30 
signal timings considering the random characteristics of traffic demand for a given period (7). In principle, 31 
the enhancement of signal timing robustness comes at the expense of control efficiency. Therefore, the 32 
rationality of TOD interval partition determines the difficulty of balancing efficiency and robustness in 33 
the process of signal timing optimization, that is, under the premise of ensuring robustness, less efficiency 34 
would be sacrificed. In this context, TOD interval partitions also need to be collaboratively considered 35 
when determining the robust signal timing. 36 

To overcome the shortcomings brought by the two-stage method, this paper proposes a bi-level 37 
optimization framework that can integrally consider the efficiency and robustness, and jointly optimize 38 
both TOD interval partitions and signal timings.  39 

 40 
Literature Review 41 
Most of the literature since the 2000s separately focuses on methods for two respective stages (i.e., TOD 42 
interval partitions and robust signal timings). Few studies have jointly optimized the TOD interval 43 
partitions and the robust signal timings considering multiple demand scenarios across multiple days.  44 

 45 
TOD signal control interval partitions 46 
A large number of earlier studies have treated the TOD interval partition problem as a cluster problem 47 
using traffic data such as volume, speed, occupancy, etc. Generally, both hierarchical and non-48 
hierarchical clustering techniques were investigated (8-9). With non-hierarchical clustering algorithms, 49 
the k-means method was first proposed by Wang et al. (10) in partitioning TOD intervals, in which 50 
smoothing techniques are needed for noisy points. To smooth the small cluster generated by the 51 
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traditional k-means which causes discontinuous TOD interval, Guo & Zhang (11) further considered the 1 
time dimension in k-means clustering. Dong et al. (12) combined the Isomap algorithm with the k-means 2 
algorithm to guarantee reasonable interval length. Song et al. (13) proposed several adjustment methods 3 
for the k-means algorithm to avoid non-contiguous periods. Wan et al. (14) applied the bisecting k-means 4 
algorithm to determine TOD breakpoints based on the variation of queuing shockwave speeds.  5 

With hierarchical clustering algorithms (15), Smith et al. (3) applied the CART decision tree for 6 
classifying volume and occupancy data. Jun & Yang (16) clustered the input data by forming up the 7 
Kohonen Neural Network and applied the determined TOD breakpoints on a corridor. Shen et al. (17) 8 
developed a fast and robust fuzzy C-Means clustering approach to obtain TOD breakpoints.  9 

Different from the clustering techniques, some studies formulate the TOD interval partition 10 
problem as an optimization problem, which can be solved by heuristic algorithms such as genetic 11 
algorithms (GA) (18). More recently, Coogan et al. (19) established a convex optimization model that 12 
considered time segment cost and adjusted TOD breakpoints through partial least squares predictions. A 13 
dynamic programming formulation was proposed in (20) which was solved by a recursive algorithm to 14 
optimize TOD breakpoints.  15 

For both clustering and optimizing techniques, the TOD interval partitions aim to discover the 16 
structural patterns in the input traffic data without explicitly considering its impacts on signal control 17 
efficiency. Additional methods are required for jointly considering the TOD interval partitions and signal 18 
timings. 19 

 20 
Robust Optimization of Traffic Signal Timing 21 
To deal with the traffic demand uncertainty, robust optimization has recently been paid more attention to. 22 
It uses the uncertain set (e.g., day-to-day hourly flow) to describe the traffic uncertainty. Also, the worst 23 
scenario will be minimized to find the optimal solution. Specifically, it is since the work of Yin (21) that 24 
the study of robust optimal signal timing has gained momentum, in which three robust models were 25 
proposed to obtain robust optimal signal timing. Most subsequent studies have developed new methods 26 
based on one of these three robust optimization models as summarized below. 27 

The first model is the scenario-based mean-variance (MSD) optimization. It uses a weighted 28 
linear combination of the mean and standard deviation (SD) of traffic performance measures (e.g., delay) 29 
as the objective function. Zheng et al. (22) formulated a reliability-based signal optimization problem 30 
based on an analytic model of travel time distribution, in which the model assumes periodic average 31 
demand. Chen et al. (7) proposed a simulation-based optimization framework for reliable large-scale 32 
signal control, with consideration of mean and SD of travel time. Chen et al. (23) generated a robust 33 
operational scheme with minimized mean and SD of vehicular delay of signalized intersections with 34 
contraflow left-turn lanes.  35 

The second model is the scenario-based conditional value-at-risk (CVaR) minimization, which 36 
uses the CVaR value to represent robustness. Zhang et al. (24) implemented the cell-transmission model 37 
(CTM) and minimized the high-consequence mean excess delay as CVaR by optimizing green splits, 38 
cycle length, and offsets along an arterial. Based on (24), Zhang et al. (25) extended the CTM to define 39 
mean excess exposure as the environmental risk. Papatzikou and Stathopoulos (26) minimized the excess 40 
delay calculated from the Highway Capacity Manual (HCM) as the risk of being oversaturated (CVaR) to 41 
improve signal control performance. 42 

Different from MSD and CVaR, the min-max optimization model (MNMX) is suitable for 43 
circumstances where traffic data are limited. The MNMX is to minimize the potential maximum delay 44 
within the likelihood region. Li (27) formulated a binary integer programming model for robust signal 45 
timing by minimizing maximum delays. Tettamanti et al. (28) presented a model predictive control 46 
approach for minimizing the objective function with the appearance of the worst case. Yang et al. (4) used 47 
demand intervals (similar to the TOD intervals) to represent time-dependent demand fluctuation as a set 48 
of uncertain variables for adjacent time horizons. Chiou (29) proposed a bi-level robust model solved by 49 
trust-region cutting plane projection considering travel cost and capacity expansion. A min-max 50 
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mathematical program with the equilibrium constraints model was then established by Chiou (30) to 1 
minimize the maximum delays and number of stops considering uncertain Origin-Destination demand.  2 

More recently, Shirke et al. (31) proposed a meta-heuristic approach and compared it with the 3 
above three robust optimization models. Although some attempt has focused on developing new methods 4 
for more robust signal timings, the three above-mentioned models are still active for robust optimization. 5 
However, most of the literature only considers a predefined period. In practice, the overall robustness for 6 
multiple TOD intervals needs to be considered as well. 7 

 8 
Integrated Optimization of TOD breakpoints and signal timings 9 
Attempts have merged in determining TOD interval partitions and signal timings within an integrated 10 
framework. Wong & Woon (32) proposed an iterative method that can re-assign the TOD breakpoints 11 
based on the optimized signal plan. Xu et al. (33) put the k central point clustering algorithm into a two-12 
order optimization framework and used a piecewise point division model. Abbas and Sharma (34) 13 
proposed a method based on the non-dominated sorting genetic algorithm for optimizing delay, stops and 14 
degree of detachment with signal timing generated by PASSER V. Park and Lee (35) conducted the 15 
greedy search algorithm based on simulation results to finalize TOD breakpoints. Lee et al. (36) 16 
considered the TOD control transition cost and developed a GA-based optimizer for optimal breakpoints. 17 
Zheng et al. (37) proposed a simple delay model based on the HCM formula to determine the TOD 18 
breakpoints. García-Ródenas et al. (5) formulated a bilevel TOD determination problem solved by 19 
memetic algorithms with four approaches to determine the optimal number of TOD intervals. Most 20 
studies solve the integrated optimization problem in a deterministic way. To the best of our knowledge, a 21 
well-balancing framework between TOD interval partitions and robust signal timing has not been 22 
identified.  23 
 24 
Contribution 25 
This paper fills the research gap for jointly optimizing the TOD interval partition and signal timing under 26 
the uncertainty of traffic demand, and it has the following contributions: (i) An integrated bi-level 27 
optimization framework is established with delay minimization as the upper level (UL) and the robustness 28 
as the lower level (LL). (ii) The relationship between the duration of TOD interval and the signal cycles is 29 
explicitly discussed for smoothing the signal control transition. (iii) Scenario-based method is adopted to 30 
quantify traffic demand uncertainty and calculate vehicle delay over multiple TOD intervals given 31 
historical traffic data. 32 
 33 
Paper Structure 34 
The rest of this paper is organized as follows: Section 2 formulates a bi-level optimization framework for 35 
the TOD interval partition problem with robust signal timings which is solved by the BLEAQ-II 36 
algorithm. The delay calculation method and the TOD interval regulation method are also discussed in 37 
Section 2. Section 3 conducts a case study based on the SUMO simulation platform, in which the 38 
proposed method is compared with the benchmark methods. Section 4 gives the concluding remarks and 39 
future works.  40 

 41 
METHODOLOGY 42 
Notations and Assumptions 43 
To formulate the TOD interval partition problem, we first introduce the following notations in TABLE 1 44 
for the optimization framework proposed in the next section: 45 

In this paper, we assume that: (i) the number of TOD intervals is pre-determined; (ii) advance 46 
detectors are installed on each approach of the intersection, which would provide accurate accumulative 47 
arrival curves (CAC) with a certain data collection interval (e.g., 5-min) for each lane group; (iii) the 48 
saturation flow rate and signal lost time are constant while traffic demand can fluctuate day-by-day. 49 

 50 
 51 
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TABLE 1 Notations 1 

Td total delay for all TOD intervals on D days (s) 

l lane group (L lane groups in total) 

𝑙𝑐 set of critical lane groups 

n day (D days in total) 

P TOD interval (ρ TOD intervals in total) 

𝑑𝑃
𝑛 total delay of TOD interval P on day n (s) 

𝑑𝑃
𝑛̅̅̅̅  average total delay of TOD interval P for D days (s) 

𝜎𝑑𝑃𝑛  SD of total delay of TOD interval P for D days (s) 

𝑔𝑃
𝑙  effective green time of lane group l in TOD interval P (s) 

𝐶𝑃 cycle length in TOD interval P (s) 

𝐿𝑃 duration of TOD interval P (s) 

TL sum of the durations of all TOD intervals (s) 

𝐿𝑡 total lost time for each cycle (s) 

𝐿𝑃
𝑀𝑖𝑛(𝐿𝑃

𝑀𝑎𝑥) minimum (maximum) duration of TOD interval (s) 

𝑔𝑃
𝑀𝑖𝑛(𝑔𝑃

𝑀𝑎𝑥) minimum (maximum) effective green time (s) 

𝐶𝑃
𝑀𝑖𝑛(𝐶𝑃

𝑀𝑎𝑥) minimum (maximum) cycle length (s) 

γ robustness ratio 

 2 
Bi-level Optimization Framework 3 
The TOD interval partition with robust signal timings problem can be modeled as a bi-level optimization 4 
framework.  For a more detailed discussion about bi-level optimization see (38). 5 

In the proposed bi-level optimization framework, we consider the total delay minimization as the 6 
UL objective while the robust signal control is the LL objective. In other words, the TOD interval 7 
partition problem will be considered under the robust signal timing scheme. Mathematically, the bi-level 8 
optimization framework can be written as follows. 9 

 10 

min
𝑔𝑃
𝑙 ,𝐶𝑃,𝐿𝑃 

𝑇𝑑 = ∑∑∑𝑑𝑃
𝑛(𝑔𝑃

𝑙 , 𝐶𝑃 , 𝐿𝑃)

𝜌

𝑃=1

𝐿

𝑙=1

𝐷

𝑛=1

 (1) 

  

𝑠. 𝑡. (𝑈𝐿)  

∑𝐿𝑃

𝜌

𝑃=1

= 𝑇𝐿 (2) 

𝐿𝑃
𝑀𝑖𝑛 ≤ 𝐿𝑃 ≤ 𝐿𝑃

𝑀𝑎𝑥 (3) 

𝑚𝑜𝑑(𝐿𝑃 , 𝐶𝑃) = 0 (4) 

min
𝑔𝑃
𝑙 ,𝐶𝑃 

∑∑𝑑𝑃
𝑛̅̅̅̅ (𝑔𝑃

𝑙 , 𝐶𝑃)

𝜌

𝑃=1

𝐿

𝑙=1

+ γ𝜎𝑑𝑃
𝑛(𝑔𝑃

𝑙 , 𝐶𝑃) (5) 

𝑠. 𝑡. (𝐿𝐿)∑𝑔𝑃
𝑙

𝑙∈𝑙𝑐

+ 𝐿𝑡 = 𝐶𝑃 (6) 

                𝑔𝑃
𝑀𝑖𝑛 ≤ 𝑔𝑃 ≤ 𝑔𝑃

𝑀𝑎𝑥 (7) 

                𝐶𝑃
𝑀𝑖𝑛 ≤ 𝐶𝑃 ≤ 𝐶𝑃

𝑀𝑎𝑥 (8) 

 11 
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Equation 1 and Equation 5 are UL and LL objective functions, respectively. First, we keep 𝐿𝑃 1 
constant and solve the LL problem to obtain the optimal 𝑔𝑃

𝑙  and 𝐶𝑃, and then substitute the optimal 𝑔𝑃
𝑙  2 

and 𝐶𝑃 into the UL problem to solve the optimal 𝐿𝑃. We selects the MSD optimization model to obtain 3 

robust signal timings. The total delay (Td) and average and SD of total delay (𝑑𝑃
𝑛̅̅̅̅  and 𝜎𝑑𝑃

𝑛) would be 4 

calculated according to models described in Section 2.2.1. For UL constraints, Equation 2 means the sum 5 
of each TOD interval duration equals a constant value (e.g., 86400s for one-day time), and Equation 3 6 
considers the minimum and the maximum interval duration to avoid high transition costs. And the 7 
constraint on the divisibility relationship between 𝐿𝑃 and 𝐶𝑃 (Equation 4) will be further discussed in 8 
Section 2.2.2 to smooth the signal transition process and guarantee TOD control continuity. In addition, 9 
linear constraints between effective green time and the cycle time are listed from Equation 6 to Equation 10 
8. 11 

 12 
Delay Estimation Method 13 
In this paper, the traffic demand and supply patterns are captured by the cumulative arrival and departure 14 
curves (CAC and CDC), respectively. An example of CAC and CDC for a given lane group within a 15 
signal cycle is shown in Figure 1. The orange and light blue curves are CAC and CDC, respectively, in 16 
which g is the green time duration and C is the cycle length. In practice, the approximate CAC (the dark 17 
blue curves in Figure 1) can also be generated as a segmented polyline (segmental linearization), and the 18 
CDC is also a segmented polyline once the signal timings and saturation flow rates are determined. 19 
Compared with the traditional delay model such as Webster’s uniform delay model (39), the arrival-20 
departure curve can better handle the oversaturated condition. 21 

 22 

 23 
 24 
Figure 1 Cumulative arrival and departure curve 25 

 26 
As shown in Figure 1, the slope of CAC is the arrival flow rate which varies among different time 27 

intervals, and the slope of the CDC represents the capacity of the signalized lane group, which remains as 28 
0 if it is a red signal and turns to the saturation flow rate s before intersecting with the CAC. Note that the 29 
CDC will coincide with the CAC after intersecting in the green phase as shown in Figure 1a. For a given 30 
signalized intersection, assuming we have m lane groups and n analyzed days, we will generate m×n 31 
CACs and CDCs.  32 
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For a given TOD interval from the UL, we calculate the interval total delay through a cycle-by-1 
cycle approach using the CDC and CAC. According to HCM, the average control delay is the summation 2 
of the uniform delay (UD), the incremental delay (ID), and the initial queue delay (IQD). We first discuss 3 
the    and IQ  from the cyclic perspecti e and then sum multiple cycles’    and IQ  up to obtain the 4 
UD and IQD of a given period. 5 

For each cycle, the sum of total UD and IQD can be calculated as the area enclosed by the CAC 6 
and CDC. To simplify the calculation and improve the computational efficiency, we assume that vehicles 7 
arrive at the intersection at a uniform arrival rate of k during each cycle (the slope k of the approximate 8 
CAC in Figure 1) within the given period.  9 

As a section of the daily CAC and CDC, the CAC and CDC within one signal cycle (Figure 1) 10 
rely on the CAC and CDC from the last cycle. So, the initial queue for the analysis cycle, 𝐴1 − 𝐷1, is 11 
determined by the last cycle, and the final cumulative arrivals of the analysis cycle (𝐴2) equal to  𝐴1 + 𝑘𝐶. 12 
Here, we generalize the typical triangular area to the polygon area (pink area in Figure 1) to handle the 13 
initial queue problem by 𝐴1 and 𝐷1 and capture the TOD control transition process by r1. 14 

The area calculation approach can be categorized into two cases according to conditions whether 15 
the analysis cycle is under-saturated or over-saturated (whether the CDC can intersect with the CAC 16 
within the analysis cycle or not). Both conditions depend on the area of the trapezoid enclosed by CAC 17 
and the x-axis minus the area of the polygon enclosed by CDC and the x-axis. Hence, we can obtain the 18 
cyclic total UD and IQD for under-saturated and over-saturated conditions by Equation 9. After the 19 
cyclic analysis is completed, we update the final cumulative departures 𝐷2 to determine the next cycle’s 20 
𝐷1 by Equation 10. 21 

 22 

𝑑𝑐 = {
𝐶 × (𝐴1 +

1

2
𝑘𝐶) −

𝑔

2
𝑢𝑠 − (𝐶 − 𝑟1 −

𝑢

2
−

𝑔

2
) × (𝑘𝑟1 + 𝑘𝑔 + 𝐴1 −𝐷1) − 𝐷1𝐶    0 ≤ 𝑢 ≤ 𝑔

𝐶 × (𝐴1 +
1

2
𝑘𝐶) − 𝑔𝑠 (𝐶 − 𝑟1 −

𝑔

2
) − 𝐷1𝐶    𝑒𝑙𝑠𝑒                          (𝑢 =

𝑘𝑟1 + 𝐴1 − 𝐷1
𝑠 − 𝑘

)
 (9) 

𝐷2 = {
𝐴1 + 𝑘(𝑔 + 𝑟1)                    0 ≤ 𝑢 ≤ 𝑔          

𝐴1 + 𝑔𝑠          𝑒𝑙𝑠𝑒      (𝑢 =
𝑘𝑟1 + 𝐴1 − 𝐷1

𝑠 − 𝑘
)

 (10) 

 23 
Here, we use the HCM formula as shown in Equation 11 to calculate the average ID of a given 24 

period T which contains multiple signal cycles. 25 
 26 

𝑑𝐼 = 900𝑇 [(
𝑘𝐶

𝑔𝑠
−  ) + √(

𝑘𝐶

𝑔𝑠
−  )

2

+
4𝐶2𝑘

𝑔2𝑠2𝑇
 ] (11) 

 27 
Then, for a given analysis period containing B cycles with a uniform arrival rate k (T=BC), we 28 

can obtain the periodic total control delay by multiplying the average control delay with the traffic 29 
volume (kBC) in Equation 12. The sum of the total UD and IQD is the first item, and the total ID is the 30 
second item. 31 
 32 

{𝑑𝑃}𝐵 = {𝑑𝐶}𝐵 + {𝑑𝐼}𝐵 = ∑{𝑑𝐶}𝐵

𝐵

𝑏=1

+ 900𝑘𝐵2𝐶2 [(
𝑘𝐶

𝑔𝑠
−  ) + √(

𝑘𝐶

𝑔𝑠
−  )

2

+
4𝐶𝑘

𝑔2𝑠2𝐵
 ] (12) 

 33 
By applying the modified delay estimation process based on HCM, we can more intricately 34 

capture the total delay for a shorter time interval. Besides, the update mechanism of CACs and CDCs 35 
brings continuity in estimating IQD, especially for the oversaturated intersections.  36 
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Regulation of the duration of TOD Intervals 1 
In this paper, the durations of the TOD intervals are the decision variables. For an intersection that has P 2 
TOD intervals, it has P cycle lengths, P signal timing schemes, and P-1 TOD breakpoints. Each TOD 3 
interval contains several data-collecting periods (e.g., 5-min) and the total delay of each period can be 4 
calculated by the above-mentioned cycle-by-cycle process. In most cases, the duration of the data-5 
collecting period or TOD interval does not happen to be equal to the integer cycle length. So, we propose 6 
an adjustment method to guarantee the TOD intervals as the integer numbers of the data-collecting period 7 
and the cycle length, so that the convenience of the signal control transition process can be achieved.  8 
 9 
TABLE 2 Pre-determined Parameters 10 

Algorithm 1: Method of adjusting TOD intervals for estimating delays 

Input: Total No. of data-collecting periods I (with each duration of 𝑇𝐼), duration set of TOD 

intervals {𝐿𝑃}𝑃=1
𝜌

, cumulative arrivals 𝐴2, effective green time set {𝑔𝑃}𝑃=1
𝜌

, effective red time 

before green set {𝑟𝑃}𝑃=1
𝜌

, and cycle length set {𝐶𝑃}𝑃=1
𝜌

. 

Output: Total delay di for each data-collecting interval i. 

Initialization: 𝑡𝑃 ← ∑ 𝐿𝑃𝑃 , 𝐴2
0 = 0, 𝐷2

0 = 0, 𝜀0 = 0 

for i=1: I do 

   Update 𝐴1
𝑖 ← 𝐴2

𝑖−1 and 𝐷1
𝑖 ← 𝐷2

𝑖−1; 

   Update 𝑘𝑖 ← (𝐴2
𝑖 − 𝐴1

𝑖 )/(𝑇𝐼 + 𝜀𝑖−1); 

if 𝑖 > 0 and 𝑖 ≤ 𝑡1 then 

Update 𝜀𝑖 ← 𝑚𝑜𝑑(𝑇𝐼 + 𝜀𝑖−1, 𝐶1); 
      return 𝑑𝑖 via Equation 12 with  𝑔1, 𝑟1, 𝐶1, 𝑘1 for ⌊(𝑇𝐼 + 𝜀𝑖−1)/𝐶1⌋ cycles; 

      Update 𝐴2
𝑖 ← 𝐴1

𝑖−1 + 𝑘𝑖𝐶1⌊(𝑇𝐼 + 𝜀𝑖−1)/𝐶1⌋; 

      return 𝐷2
𝑖  via Equation 10 for ⌊(𝑇𝐼 + 𝜀𝑖−1)/𝐶1⌋ cycles; 

   …… 

   else if 𝑖 > 𝑡𝑃 and 𝑖 ≤ 𝑡𝑃+1 (𝑃 +  ≤ 𝜌) 

Update 𝜀𝑖 ← 𝑚𝑜𝑑(𝑇𝐼 + 𝜀𝑖−1, 𝐶𝑃+1); 
      return 𝑑𝑖 via Equation 12 with  𝑔𝑃+1, 𝑟𝑃+1, 𝐶𝑃+1, 𝑘𝑃+1 for ⌊(𝑇𝐼 + 𝜀𝑖−1)/𝐶𝑃+1⌋ cycles; 

      Update 𝐴2
𝑖 ← 𝐴1

𝑖−1 + 𝑘𝑖𝐶𝑃+1⌊(𝑇𝐼 + 𝜀𝑖−1)/𝐶𝑃+1⌋; 

      return 𝐷2
𝑖  via Equation 10 for ⌊(𝑇𝐼 + 𝜀𝑖−1)/𝐶𝑃+1⌋ cycles; 

   …… 

   endif 

end for 

 11 
For a data-collecting period, we divide the period by cycle length, the quotient obtained is the 12 

number of complete cycles contained in the period, and the remainder is called the residual time. Next, we 13 
consider the next period as the sum of the period and the residual time from the last period, and we will 14 
obtain the quotient and the reminder as well. Then, repeat the above process till the last data-collecting 15 
period of the analyzed TOD interval, and it will also generate a residual time, and we will continuously 16 
transfer it to the next period and set the TOD breakpoint as the end of the integer cycle rather than the end 17 
of the last data-collecting period. For example, for a TOD interval containing 24 5-min data-collecting 18 
periods with no residual time from the last interval (24×300=7200s), if the cycle length is 60s, then it 19 
contains exactly 5 cycles. But if the cycle is 70s, it contains 4 complete cycles and generates 20s of 20 
residual time for the first period. We transfer the 20s to the next 5-min period which makes the next 21 
period 320s, and it contains 4 complete cycles and generates 40s of residual time. In this way, when it 22 
comes to the last 5-min period, it will generate 60s of residual time (7200=102×70+60), and we will 23 
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transfer the 60s to the next data-collecting period for the next TOD interval and set the breakpoint at 1 
7140s. The pseudo-code of the above process is listed in TABLE 2 for one day of a single lane group. 2 
Note that we assume no residual time from the last day for each day’s first     inter al. 3 

 4 

Input required data for Algorithm 1 of all 

lane group (1 to L) for multiple days (1 to D)

l=1

Execute Algorithm 1 for lane 

group l on day n

Output total delay matrix of 

all lane groups

l=l+1

l=L?

Compute total delay for each 

TOD interval (1 to P) with 

corresponding periods

Y

N

n=1

n=D?

Y

n=n+1

Output total delay matrix for lane group l

(with each TOD interval of multiple days)

N

Partitions (P) 

Days(n) 
1 … P … ρ Daily delay for 

day n 

1 d(1,1) … d(1,P) … d(1,ρ) ∑ 𝑑(1,𝑃)
𝜌

𝑃=1
 

…
 

…
 … 

…
 … 

…
 

…
 

n d(n,1) … d(n,P) … d(n,ρ) ∑ 𝑑(𝑛,𝑃)
𝜌

𝑃=1
 

…
 

…
 … 

…
 … 

…
 

…
 

D d(D,1) … d(D,P) … d(D,ρ) ∑ 𝑑(𝐷,𝑃)
𝜌

𝑃=1
 

Partitional delay 

for multiple days 
∑ 𝑑(𝑛, 1)

𝐷

𝑛=1
 … ∑ 𝑑(𝑛,𝑃)

𝐷

𝑛=1
 … ∑ 𝑑(𝑛,𝜌)

𝐷

𝑛=1
 ∑ ∑ 𝑑(𝑛,𝑃)

𝜌

𝑃=1

𝐷

𝑛=1
 

 

 5 
 6 
Figure 2 Flowchart for total delay calculations over multiple lane groups and multiple days 7 

 8 
Also, the CAC generated in Algorithm 1 can be regarded as the reasonable approximation of the 9 

original CAC if TI is relatively small (i.e., 5-min or 10-min) and the generated CDC can well handle 10 
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different g, C, and r1 for different TOD intervals. And to obtain the delays required in the bi-level 1 
optimization framework, we repeat Algorithm 1 for multiple days of all lane groups. As shown in the 2 
flowchart in Figure 2, for each TOD interval, the total delay matrix is generated which the value in the 3 
lower right corner of the table is for UL function and the partitional total delays in each column for 4 
multiple days are for average and SD of total delay in the LL objective function. 5 

 6 

5. Termination check 

4. Improvements

3. Update each offspring

2. Reproduction

1. Initialize UL population

LL optimization

Start

End

Generation += 1

Termination check

Y

N

Initialize LL population 
(Assign fitness using LL function & constraints)

Termination check

Y

N

LL optimization for each 

population

Tag successful LL 

optimization

Assign fitness based on 

UL function & constraints

Tournament selection 

based on UL fitness

Create offspring using 

genetic operators 

No. of tag members <

half of population size
LL optimization

Local quadratic 

approximation

Local search for tag 

members with best fitness 

Genetic operations
(Tournament selection and offspring creation)

Update offspring

Generation += 1

 7 
 8 
Figure 3 BLEAQ-II algorithm 9 
 10 
Optimization Algorithm 11 
From the formulation of the bilevel optimization framework, the TOD interval partition with robust signal 12 
timings problem can be considered an NP-hard problem. Hence, we select an improved version of the 13 
bilevel evolutionary algorithm based on quadratic approximations (BLEAQ-II) to solve the problem in 14 
this case. Compared with the traditional BLEAQ algorithm, BLEAQ-II has fewer overall function 15 
evaluations. Figure 3 shows the step-by-step computation procedure for the BLEAQ-II algorithm. More 16 
details about BLEAQ-II are introduced in (40).  17 

For the proposed bi-level optimization problem, we first conduct the LL optimization to obtain 18 
the robust signal timings, then execute steps 1 to 5 in Figure 3 to solve the UL optimization problem with 19 
the optimized LL results. After the iteration process is completed, we finalize the results by outputting the 20 
optimal TOD partitions (from UL populations) and optimal signal timings (from LL populations). 21 
 22 
 23 
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 1 
 2 
Figure 4 Experiment setup 3 
 4 
CASE STUDY  5 
Experiment setup 6 
To simulate the real-world environment, we built a simulation platform through Simulation of Urban 7 
MObility (SUMO) software (version 1.10.0) run by a desktop computer with an Intel Core i5-7200U 2.7 8 
GHz CPU and a memory of 16 GB (the embedded python version is 3.8). The relative parameters of the 9 
simulation are listed in TABLE 3. As shown in Figure 4, a typical 4-leg signalized intersection was 10 
constructed. To create traffic demand fluctuation within the day, we defined the mean flow rate of each 11 
movement for every hour under the fluctuation, and vehicles arrive in each hour follow the Poisson 12 
distribution with the mean flow rate plus a random integer to account for a moderate traffic demand 13 
variations over multiple days. Then, we collected the flow data based on 5-min periods within 24 hours 14 
(288 5-min periods for a day). As shown in Figure 5, morning peak and evening peak (as oversaturated 15 
conditions) are generated for all movements, in which movements 1, 2, 3, and 8 are considered as critical 16 
movements. As for the right-turn movements (9-12), the 5-min right-turn flow within the day is generated 17 
as a constant volume plus a random integer. 18 

 19 
TABLE 3 Pre-determined Parameters in SUMO 20 

Parameters  Value  

Vehicle in SUMO  

max. acceleration (m/s^2)  0.8 

max. deceleration (m/s^2) 4.5 

max. speed (m/s) 16.67 

min. gap (m) 2.5 

length (m) 5 

dri ers’ imperfection factor  0.5 

lost time (s/phase) 4 

Lane in SUMO  

max. speed (m/s) 13.89 

width (m) 3.5 

yellow time (s/phase) 3 

 21 
 22 

a    periment Intersection in     b   raffic  low  o ements
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Figure 5 Movement demand fluctuation 2 
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We generate se en days’ scenarios as the training set and ten days’ scenarios as the test set.  n 1 
this basis, we collect 56 cumulative arrival curves for the training set. For vehicle types of the simulation, 2 
we assume that all vehicles are passenger vehicles and we use the default vehicle type provided by a 3 
SUMO example.  4 

To validate the effectiveness of the proposed methodology, we use two signal control benchmarks: 5 
(i) Single plan traffic signal control scheme (only one signal plan throughout the day), which conducts the 6 
HCM method based on mean flow for 7 days (Scheme 1). (ii) TOD signal control scheme generated 7 
through k-means clustering algorithm (also known as two-stage approach), with five TOD intervals based 8 
on the fluctuated pattern of the traffic flow (Scheme 2). For Scheme 2, we used the mean flow of 7 days 9 
for all 5-min periods of all lane groups and input them into the k-means clustering algorithm embedded in 10 
MATLAB R2022a, and the results of clustering are shown in Figure 6. Then, we applied the HCM 11 
method for each TOD interval to obtain the benchmark signal timings. 12 
 13 

 14 
 15 
Figure 6 K-means clustering results for TOD benchmark plan 16 
 17 
Optimization Results 18 
We implemented the BLEAQ-II algorithm by MATLAB R2022a on the same computer that operated the 19 
SUMO simulation platform. Firstly, we encode the durations of five TOD intervals as four UL decision 20 
variables and 20 signal timings (4 phases for each TOD interval) as 20 LL decision variables. Bounds and 21 
constraints on TOD interval durations and signal timings are listed in TABLE 4 accompanied by other 22 
pre-determined BLEAQ-II parameters. The robustness ratio is set as 2.1 according to (41). An experiment 23 
was conducted in which the BLEAQ-II was converged at the generation of 574 as shown in Figure 7. 24 
Note that we use the negative form for UL and LL function for the maximum objective required in 25 
BLEAQ-II. 26 
  27 
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TABLE 4 Pre-determined Parameters for BLEAQ-II 1 

Parameters  Value  

population size 50 for UL and 100 for LL 

dimensions of decision variables 4 for UL and 20 for LL 

maximum generations 1500 for UL and LL 

minimum TOD interval duration 12 5-min (1 h) 

maximum TOD interval duration 120 5-min (10 h) 

minimum effective green time 10 s 

maximum effective green time 100s 

maximum cycle length 180s 

stopping criteria  1e-05 for UL and LL 

crossover probability 0.9 for UL and LL 

mutation probability 0.25 for UL and 0.05 for LL 

saturation flow rate (veh/h) 900 

robustness ratio 2.1 

 2 
After the converged optimization results were obtained (denoted as Scheme 3), we compared the 3 

optimal function value with that of the TOD benchmark plan. For the UL function value, the total delay 4 
value of the benchmark scheme is -1.1777e+09 and is -5.3050e+08 for the optimal scheme. For LL 5 
function value, the benchmark mean-variance result is -3.1422e+08 while -1.3939e+08 for the optimal 6 
value, which shows effective optimization performance. 7 
 8 

 9 
 10 
Figure 7 Optimization performance of BLEAQ-II for the robust TOD problem 11 
 12 
Performance Evaluation 13 
Next, we input three schemes into the SUMO simulation platform to validate the proposed methodology. 14 
It has been pre-determined that Scheme 1 has only one signal phase sequence while Scheme 2 and 3 have 15 
five sequences for corresponding five TOD intervals. We first compare the results of three schemes from 16 
the partitional perspective. 17 

 18 



Jia, An, Lu, Xia  

16 
 

 

a) Mean of partitional total delay of the test set 

 
b) SD of partitional total delay of the test set 

 1 
Figure 8 Comparison of partitional total delay 2 

 3 
For three schemes, we collect the simulation results based on TOD benchmark partitions (Figure 4 

8) for the convenience of analysis and comparison (because Scheme 1 has no real partitions and Scheme 3 5 
has a different partition plan). From the results, we find that Scheme 3 has a lower sum of total delay and 6 
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a lower sum of SD of partitional total delay than Scheme 1 and 2 with a decrease of 31% and 12.6%, 44.7% 1 
and 29.3%, respectively for the test set. However, for each interval, the mean and SD of total delays are 2 
varied, and the proposed methodology tends to preferentially minimize the mean and SD for the worst 3 
TOD intervals (i.e., interval 5 in this case). Here, Interval 5 is a typical scenario that exists residual 4 
vehicles that have not had enough time to leave at the last TOD interval. So, more reasonable TOD 5 
interval partitions with robust signal timings improve the effectiveness and the robustness from the day’s 6 
perspective considering continuity. 7 

Also, we perform a t-test to the results in the test set to validate whether the changes in daily total 8 
delay are statistically significant. For Scheme 1, we have the mean value of daily total delay as 9 
12505479s and the SD as 906471.8s. The corresponding values of 2 and 3 are 10748214s and 665684.3s, 10 
9546041s and 635961.6s, respectively. The degree of freedom is 18 and the confidence level is 0.05. We 11 
then calculate the test statistic for which the null hypothesis is that the two means are equal. The test 12 
statistic is 8.45 (between Scheme 1 and 3) and 4.13 (between Scheme 2 and 3) which indicate that the 13 
proposed plan improves in daily total delay based on Scheme 1 and 2. 14 

In addition, we further analyze the mean and SD of hourly total delay for test sets in the 15 
logarithmic form which improves the identifiability of the comparison of results (Figure 9). For the mean 16 
of hourly total delay, it can be found that the proposed plan leads to an increase in total delay from 8:00 to 17 
13:00 and a relatively sharp decrease from 13:00 to 15:00 and from 22:00 to 24:00. For the first seven 18 
hours, three schemes share a similar performance because of the relatively low traffic demand. 19 
Particularly, the higher total delays that happen in 21:00-24:00 under Scheme 1 and 2 show the 20 
advantages of the proposed method over single plan control and TOD partition schemes that do not 21 
adequately account for flow fluctuations when dealing with residual vehicles.  22 

And for SD, the proposed method yields better performance from 13:00 to 17:00 in test sets 23 
compared with Scheme 1 and 2, particularly sharp decreases happen from 22:00 to 24:00 which also 24 
represents the weakening robustness caused by the residual vehicles can effectively be improved by the 25 
proposed method. Also, the SDs of Scheme 3 from 10:00 to 13:00 are larger than that of Scheme 1 and 2 26 
which indicates that the proposed plan does not yield better performance for every hour. Besides, three 27 
schemes have similar SDs from 0:00 to 7:00, which are in accordance with the mean. 28 

In general, similar to the partitional total delays mentioned above, the proposed method tends to 29 
improve the worst-case hour’s performance as a preference, and more consideration is given to delays of 30 
residual vehicles caused by unreasonable TOD partitions.  31 

 32 
 33 

  34 
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a) Mean of hourly total delay of the test set 

 
b) SD of hourly total delay of the test set 

 1 
Figure 9 Total delay performance (in logarithmic coordinate) for 24 hours of the test set 2 
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CONCLUSIONS 1 
This paper proposes a bi-level optimization framework to jointly consider TOD interval partition 2 

and robust signal timings. The UL of the bi-level optimization is the total delay of all TOD intervals for 3 
multiple lane groups and multiple days, while the LL is the partitional mean-variance robust signal timing 4 
model. First, the delay estimation method is discussed based on CACs and CDCs and the HCM formula. 5 
Next, a TOD interval regulation method is designed that covers the conflict due to TOD interval duration 6 
not being divisible by cycle length. The evolutionary algorithm BLEAQ-II is selected to solve the bi-level 7 
optimization problem. Finally, we design a SUMO simulation platform as the validation approach. The 8 
single-plan method, the k-means clustering method, and the proposed method have been conducted 9 
through the platform. The results show that the clustering method and the proposed method outperform 10 
the single-plan method. And the total delay of the proposed method has been decreased by 12.6% and the 11 
robustness has been improved by 29.3% compared with the k-means clustering method, which shows the 12 
proposed approach can well handle the robust TOD interval partitions problem with better performance 13 
than the benchmark methods. 14 

However, limitations are needed to be considered for future study. First, the method can be 15 
improved by considering different number of TOD intervals. Then, field tests of the proposed method can 16 
be further conducted for practical validation. In addition, further research will be focused on the robust 17 
TOD interval partition technique with the actuated signal control facilities. 18 
 19 
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